Purpose
To compute the matrices of the positive feedback controller
| Ak | Bk |
K = |----|----|
| Ck | Dk |
for the shaped plant
| A | B |
G = |---|---|
| C | 0 |
in the Discrete-Time Loop Shaping Design Procedure.
Specification
SUBROUTINE SB10KD( N, M, NP, A, LDA, B, LDB, C, LDC, FACTOR,
$ AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, RCOND,
$ IWORK, DWORK, LDWORK, BWORK, INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDDK,
$ LDWORK, M, N, NP
DOUBLE PRECISION FACTOR
C .. Array Arguments ..
INTEGER IWORK( * )
LOGICAL BWORK( * )
DOUBLE PRECISION A( LDA, * ), AK( LDAK, * ), B( LDB, * ),
$ BK( LDBK, * ), C( LDC, * ), CK( LDCK, * ),
$ DK( LDDK, * ), DWORK( * ), RCOND( 4 )
Arguments
Input/Output Parameters
N (input) INTEGER
The order of the plant. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A of the shaped plant.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B of the shaped plant.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C of the shaped plant.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
FACTOR (input) DOUBLE PRECISION
= 1 implies that an optimal controller is required;
> 1 implies that a suboptimal controller is required
achieving a performance FACTOR less than optimal.
FACTOR >= 1.
AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
The leading N-by-N part of this array contains the
controller state matrix Ak.
LDAK INTEGER
The leading dimension of the array AK. LDAK >= max(1,N).
BK (output) DOUBLE PRECISION array, dimension (LDBK,NP)
The leading N-by-NP part of this array contains the
controller input matrix Bk.
LDBK INTEGER
The leading dimension of the array BK. LDBK >= max(1,N).
CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
The leading M-by-N part of this array contains the
controller output matrix Ck.
LDCK INTEGER
The leading dimension of the array CK. LDCK >= max(1,M).
DK (output) DOUBLE PRECISION array, dimension (LDDK,NP)
The leading M-by-NP part of this array contains the
controller matrix Dk.
LDDK INTEGER
The leading dimension of the array DK. LDDK >= max(1,M).
RCOND (output) DOUBLE PRECISION array, dimension (4)
RCOND(1) contains an estimate of the reciprocal condition
number of the linear system of equations from
which the solution of the P-Riccati equation is
obtained;
RCOND(2) contains an estimate of the reciprocal condition
number of the linear system of equations from
which the solution of the Q-Riccati equation is
obtained;
RCOND(3) contains an estimate of the reciprocal condition
number of the linear system of equations from
which the solution of the X-Riccati equation is
obtained;
RCOND(4) contains an estimate of the reciprocal condition
number of the matrix Rx + Bx'*X*Bx (see the
comments in the code).
Workspace
IWORK INTEGER array, dimension 2*max(N,NP+M)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= 15*N*N + 6*N +
max( 14*N+23, 16*N, 2*N+NP+M, 3*(NP+M) ) +
max( N*N, 11*N*NP + 2*M*M + 8*NP*NP + 8*M*N +
4*M*NP + NP ).
For good performance, LDWORK must generally be larger.
BWORK LOGICAL array, dimension (2*N)
Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the P-Riccati equation is not solved successfully;
= 2: the Q-Riccati equation is not solved successfully;
= 3: the X-Riccati equation is not solved successfully;
= 4: the iteration to compute eigenvalues failed to
converge;
= 5: the matrix Rx + Bx'*X*Bx is singular;
= 6: the closed-loop system is unstable.
Method
The routine implements the method presented in [1].References
[1] McFarlane, D. and Glover, K.
A loop shaping design procedure using H_infinity synthesis.
IEEE Trans. Automat. Control, vol. AC-37, no. 6, pp. 759-769,
1992.
Numerical Aspects
The accuracy of the results depends on the conditioning of the two Riccati equations solved in the controller design. For better conditioning it is advised to take FACTOR > 1.Further Comments
NoneExample
Program Text
* SB10KD EXAMPLE PROGRAM TEXT
* Copyright (c) 2002-2010 NICONET e.V.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX, MMAX, PMAX
PARAMETER ( NMAX = 10, MMAX = 10, PMAX = 10 )
INTEGER LDA, LDAK, LDB, LDBK, LDC, LDCK, LDDK
PARAMETER ( LDA = NMAX, LDAK = NMAX, LDB = NMAX,
$ LDBK = NMAX, LDC = PMAX, LDCK = MMAX,
$ LDDK = MMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = 2*MAX( NMAX, MMAX + PMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 15*NMAX*NMAX + 6*NMAX +
$ MAX( 14*NMAX + 23, 16*NMAX,
$ 2*NMAX+PMAX+MMAX,
$ 3*(PMAX+MMAX) ) +
$ MAX( NMAX*NMAX,
$ 11*NMAX*PMAX + 2*MMAX*MMAX +
$ 8*PMAX*PMAX + 8*MMAX*NMAX +
$ 4*MMAX*PMAX + PMAX ) )
* .. Local Scalars ..
DOUBLE PRECISION FACTOR
INTEGER I, INFO, J, M, N, NP
* .. Local Arrays ..
LOGICAL BWORK(2*NMAX)
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), AK(LDA,NMAX), B(LDB,MMAX),
$ BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX),
$ DK(LDDK,PMAX), DWORK(LDWORK), RCOND(4)
* .. External Subroutines ..
EXTERNAL SB10KD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, NP
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) NP
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
READ ( NIN, FMT = * ) FACTOR
CALL SB10KD( N, M, NP, A, LDA, B, LDB, C, LDC, FACTOR, AK,
$ LDAK, BK, LDBK, CK, LDCK, DK, LDDK, RCOND,
$ IWORK, DWORK, LDWORK, BWORK, INFO )
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NP )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 30 I = 1, M
WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N )
30 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 40 I = 1, M
WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NP )
40 CONTINUE
WRITE( NOUT, FMT = 99993 )
WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1, 4 )
ELSE
WRITE( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' SB10KD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10KD =',I2)
99997 FORMAT (/' The controller state matrix AK is'/)
99996 FORMAT (/' The controller input matrix BK is'/)
99995 FORMAT (/' The controller output matrix CK is'/)
99994 FORMAT (/' The controller matrix DK is'/)
99993 FORMAT (/' The estimated condition numbers are'/)
99992 FORMAT (10(1X,F8.4))
99991 FORMAT ( 5(1X,D12.5))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
END
Program Data
SB10KD EXAMPLE PROGRAM DATA 6 2 2 0.2 0.0 0.3 0.0 -0.3 -0.1 -0.3 0.2 -0.4 -0.3 0.0 0.0 -0.1 0.1 -0.1 0.0 0.0 -0.3 0.1 0.0 0.0 -0.1 -0.1 0.0 0.0 0.3 0.6 0.2 0.1 -0.4 0.2 -0.4 0.0 0.0 0.2 -0.2 -1.0 -2.0 1.0 3.0 -3.0 -4.0 1.0 -2.0 0.0 1.0 1.0 5.0 1.0 -1.0 2.0 -2.0 0.0 -3.0 -3.0 0.0 1.0 -1.0 1.0 -1.0 1.1Program Results
SB10KD EXAMPLE PROGRAM RESULTS The controller state matrix AK is 0.0337 0.0222 0.0858 0.1264 -0.1872 0.1547 0.4457 0.0668 -0.2255 -0.3204 -0.4548 -0.0691 -0.2419 -0.2506 -0.0982 -0.1321 -0.0130 -0.0838 -0.4402 0.3654 -0.0335 -0.2444 0.6366 -0.6469 -0.3623 0.3854 0.4162 0.4502 0.0065 0.1261 -0.0121 -0.4377 0.0604 0.2265 -0.3389 0.4542 The controller input matrix BK is 0.0931 -0.0269 -0.0872 0.1599 0.0956 -0.1469 -0.1728 0.0129 0.2022 -0.1154 0.2419 -0.1737 The controller output matrix CK is -0.3677 0.2188 0.0403 -0.0854 0.3564 -0.3535 0.1624 -0.0708 0.0058 0.0606 -0.2163 0.1802 The controller matrix DK is -0.0857 -0.0246 0.0460 0.0074 The estimated condition numbers are 0.11269D-01 0.17596D-01 0.18225D+00 0.75968D-03
Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.
Return to index