Purpose
To compute the sine transform or cosine transform of a real signal.Specification
SUBROUTINE DF01MD( SICO, N, DT, A, DWORK, INFO )
C .. Scalar Arguments ..
CHARACTER SICO
INTEGER INFO, N
DOUBLE PRECISION DT
C .. Array Arguments ..
DOUBLE PRECISION A(*), DWORK(*)
Arguments
Mode Parameters
SICO CHARACTER*1
Indicates whether the sine transform or cosine transform
is to be computed as follows:
= 'S': The sine transform is computed;
= 'C': The cosine transform is computed.
Input/Output Parameters
N (input) INTEGER
The number of samples. N must be a power of 2 plus 1.
N >= 5.
DT (input) DOUBLE PRECISION
The sampling time of the signal.
A (input/output) DOUBLE PRECISION array, dimension (N)
On entry, this array must contain the signal to be
processed.
On exit, this array contains either the sine transform, if
SICO = 'S', or the cosine transform, if SICO = 'C', of the
given signal.
Workspace
DWORK DOUBLE PRECISION array, dimension (N+1)Error Indicator
INFO INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value.
Method
Let A(1), A(2),..., A(N) be a real signal of N samples.
If SICO = 'S', the routine computes the sine transform of A as
follows. First, transform A(i), i = 1,2,...,N, into the complex
signal B(i), i = 1,2,...,(N+1)/2, where
B(1) = -2*A(2),
B(i) = {A(2i-2) - A(2i)} - j*A(2i-1) for i = 2,3,...,(N-1)/2,
B((N+1)/2) = 2*A(N-1) and j**2 = -1.
Next, perform a discrete inverse Fourier transform on B(i) by
calling SLICOT Library Routine DG01ND, to give the complex signal
Z(i), i = 1,2,...,(N-1)/2, from which the real signal C(i) may be
obtained as follows:
C(2i-1) = Re(Z(i)), C(2i) = Im(Z(i)) for i = 1,2,...,(N-1)/2.
Finally, compute the sine transform coefficients S ,S ,...,S
1 2 N
given by
S = 0,
1
{ [C(k) + C(N+1-k)] }
S = DT*{[C(k) - C(N+1-k)] - -----------------------},
k { [2*sin(pi*(k-1)/(N-1))]}
for k = 2,3,...,N-1, and
S = 0.
N
If SICO = 'C', the routine computes the cosine transform of A as
follows. First, transform A(i), i = 1,2,...,N, into the complex
signal B(i), i = 1,2,...,(N+1)/2, where
B(1) = 2*A(1),
B(i) = 2*A(2i-1) + 2*j*{[A(2i-2) - A(2i)]}
for i = 2,3,...,(N-1)/2 and B((N+1)/2) = 2*A(N).
Next, perform a discrete inverse Fourier transform on B(i) by
calling SLICOT Library Routine DG01ND, to give the complex signal
Z(i), i = 1,2,...,(N-1)/2, from which the real signal D(i) may be
obtained as follows:
D(2i-1) = Re(Z(i)), D(2i) = Im(Z(i)) for i = 1,2,...,(N-1)/2.
Finally, compute the cosine transform coefficients S ,S ,...,S
1 2 N
given by
S = 2*DT*[D(1) + A0],
1
{ [D(k) - D(N+1-k)] }
S = DT*{[D(k) + D(N+1-k)] - -----------------------},
k { [2*sin(pi*(k-1)/(N-1))]}
for k = 2,3,...,N-1, and
S = 2*DT*[D(1) - A0],
N
(N-1)/2
where A0 = 2*SUM A(2i).
i=1
References
[1] Rabiner, L.R. and Rader, C.M.
Digital Signal Processing.
IEEE Press, 1972.
[2] Oppenheim, A.V. and Schafer, R.W.
Discrete-Time Signal Processing.
Prentice-Hall Signal Processing Series, 1989.
Numerical Aspects
The algorithm requires 0( N*log(N) ) operations.Further Comments
NoneExample
Program Text
* DF01MD EXAMPLE PROGRAM TEXT
* Copyright (c) 2002-2010 NICONET e.V.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER NMAX
PARAMETER ( NMAX = 129 )
* .. Local Scalars ..
DOUBLE PRECISION DT
INTEGER I, INFO, N
CHARACTER*1 SICO
* .. Local Arrays ..
DOUBLE PRECISION A(NMAX), DWORK(NMAX+1)
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* .. External Subroutines ..
EXTERNAL DF01MD
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, DT, SICO
IF ( N.LE.1 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99994 ) N
ELSE
READ ( NIN, FMT = * ) ( A(I), I = 1,N )
* Compute the sine/cosine transform of the given real signal.
CALL DF01MD( SICO, N, DT, A, DWORK, INFO )
*
IF ( INFO.NE.0 ) THEN
WRITE ( NOUT, FMT = 99998 ) INFO
ELSE
IF ( LSAME( SICO, 'S' ) ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99995 ) I, A(I)
20 CONTINUE
ELSE
WRITE ( NOUT, FMT = 99996 )
DO 40 I = 1, N
WRITE ( NOUT, FMT = 99995 ) I, A(I)
40 CONTINUE
END IF
END IF
END IF
*
STOP
*
99999 FORMAT (' DF01MD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from DF01MD = ',I2)
99997 FORMAT (' Components of sine transform are',//' i',6X,'A(i)',/)
99996 FORMAT (' Components of cosine transform are',//' i',6X,'A(i)',
$ /)
99995 FORMAT (I4,3X,F8.4)
99994 FORMAT (/' N is out of range.',/' N = ',I5)
END
Program Data
DF01MD EXAMPLE PROGRAM DATA 17 1.0 C -0.1862 0.1288 0.3948 0.0671 0.6788 -0.2417 0.1861 0.8875 0.7254 0.9380 0.5815 -0.2682 0.4904 0.9312 -0.9599 -0.3116 0.8743Program Results
DF01MD EXAMPLE PROGRAM RESULTS Components of cosine transform are i A(i) 1 28.0536 2 3.3726 3 -20.8158 4 6.0566 5 5.7317 6 -3.9347 7 -12.8074 8 -6.8780 9 16.2892 10 -17.0788 11 21.7836 12 -20.8203 13 -7.3277 14 -2.5325 15 -0.3636 16 7.8792 17 11.0048
Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.
Return to index